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The investigation to be presented is based on & theory in its original form. Analytical 
solutions of the S, and S, differential equations in spherical geometry will be derived, 
based on solutions in closed form of the S, equations in vacuum. In the nonvacuum case 
analytical solutions contain all exponents of I’ present in the vacuum case, plus an 
additional term in lnr multiplied by a power series which starts with r4 in S, approxima- 
tion and with rzp in S, approximation. The general solution is subject to the symmetry 
condition at r = 0 and will thus contain only terms bounded at the singular point. 
It will be shown that results go over into the vacuum solution in the limit of vanishing 
density. 

1. INTRODUCTION 

In reactor theory the detailed neutron distribution in the core and reflector of a 
nuclear reactor is governed by the transport equation. Since practical systems are 
so involved as to preclude rigorous solutions, approximations must be employed 
in order to derive expressions for the neutron distribution in space and energy. 
One such approximation is Carlson’s S, theory [I]. The general form of the S, 
solutions in cylindrical geometry was first discussed by Beuchat [2]. Mennig [3] 
derived explicit solutions in spherical geometry. 

The S, method is intrinsically a semianalytical approximation. Subdividing the 
angular variable into a finite number of intervals changes the neutron transport 
equation into a system of ordinary differential equations in space. This may be 
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transformed into the fully numerical S, method on which most codes are based by 
further discretization of the spatial variables. 

Starting from the semianalytical form of S, theory the present paper considers 
the problem of finding analytical solutions of the monoenergetic S, differential 
equations in spherical geometry. The fully numerical approach avoids dEicciries 
ar the singular point Y = 5 by integrating over a finits volume e4ement. 3n contrast 
to this, determination of the analytical solution in the region surrounding Y = 0 
represents the major problem in semianalytica! S, theory. 1a treating this problem 
one also has a practical goal in mind: Analytical S, calculations with Lie se&, 
in plane geometry [4] have led to particularly short computing times. Similar 
results were obtained from the spherical harmonics program LIE-PIW ;:S] in 
cylindrical geometry which, like S, theory, treats singular differential equations m 
the innermost zone. Hence there exists hope that the analytical approach to 
spherical geometry will Likewise show certain advantages over fully numxical 
methods. Admittedly, computing times for one-dimensional problems are siio:t5 
no matter which method is being used. However, the frequent need for p2rforming 
-many successive one-dimensional calculations in a single program provides zn 
.incentive for performing each one as rapidly as possib”ie. 

Recent versions of Car&on’s original S, formalism hate lead to short2r coim- 
puting times and to improved convergence in purely numerical comnutationr. 
However, since analytical solutions are independent of this 2Eectl and^siax &e 
original method is still the one most widely used in text books, it was decideo to 
base the treatment to be presented on the latter. Th2 derivation to be outlined may7 
of course, be applied to any other set of differential equations corresponding to 
ether modes of angular discretization. 

2. FORMULATION OF THE PROBLEM 

The monoenergetic neutron transport lequation for Pi-scattering in spherjcai 
geometry [6] is given by 

(‘p;+++ 

where 
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and where 

&-, p) = neutron flux in neutrons/cm2 set, 
p = cosine of angle between direction of neutron flight and ?, 

JYSO = isotropic part of macroscopic neutron scattering cross-section, 
zS1 = linearly anisotropic part of macroscopic neutron scattering 

cross-section, 
& = macroscopic fission cross-section, 
,X = total macroscopic neutron cross-section. 

The term “P,-scattering” implies that only the PO(p) and PI(p) terms are kept in 
an expansion of the scattering cross-section into a series of Legendre polynomials 
in p. 

If several concentric zones are present y, z7, & , Z; , @, and J will carry an 
additional index ~2: 

Zone m: rm-, < r < I, , m = 1, 2 ,..., M. 

For the innermost zone (m = 1) r,, = 0. Owing to the singularity at r = 0 this 
zone is of particular interest and finding the neutron distribution in it turns out to 
be the main problem in solving Eq. (1) for all zones. Lie series solutions may be 
used in those regions where r,+, f: 0 [2] [5] [7] [8], with series coefficients obtained 
recursively from the differential equations. Owing to its simplicity the case with 
rmwl f 0 will not be discussed further in this paper. The treatment to be presented 
will thus be confined to the inner zone (0 < r < R), allowing the zone index to be 
omitted. In a one-region problem the solution will be valid throughout the entire 
zone. In contrast to this, a fully numerical treatment requires even single zone 
problems to be divided into several subzones. The required solution, y(r, p), is 
determined by Eq. (1) and the imposed boundary conditions. The neutron distri- 
bution in a spherical reactor of outer radius R must obey the following boundary 
conditions: 

(2) 

The first step consists of subdividing the angular variable TV into n = 2N 
intervals Ii = [,uLi , pi+J, and to approximate v(r, EL) linearly in p in each interval: 

where 
j = 1, 2,... . 
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The right-hand side of Eq. (1) is integrated numerically by any of several well- 
known methods, resulting in the expressions below 

wkl and wk2 are weight factors depending on the method of integration ern~~~y~d~ 
Angular integration over an interval Ii with use of Eq. (3) transforms Eq. (I) 

into the following set of differential equations [9]: 

where 

with 

j = 1, 2,..., 2N3 

where primes denote differentiation with respect to r. In these equations all material 
constants are contained in the coefficients aj+l,s on the right-hand side: 

j = 1, 2 ,...) 2N~ 

It will be noted that the set of 2N differentiai equations, Eq. (5) contains 
(2N + 1) unknowns. For this reason Eq. (5) must be augmented by an additional 
differential equation obtained by setting p = p1 = -1 in Eq. (1) [l]. This yields 
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or, with use of Eq. (4), 

2N+l 

-pl’(r’> = c al,kdr), 
20 

a,,, = _ \l’kl - 

kl 2 

The problem now is reduced to solving the following set of S, differential 
equations: 

with 

( 0 j= 1, 
Kj = 

I 

011 = -1, aj.k A, ” - 3.b a!j 
’ 

0 j= 1, 
K.* = 3 

+f- j>l, 
3 

j = 1, 2 ,..., 2N + 1. 

After discretization the boundary conditions .become 

%Ko = %+l+m j = 1, 2,..., N; 

da = 0, j = 1, 2 ,..., N, N + 1. 

(7-l) 

(7.2) 

3. VACUUM SOLUTION OF THE S, DIFFERENTIAL EQUATIONS 

The vacuum is characterized by Z,, = Z1 = Z = 0. In this special case all 
Ajk = 0 and the S, differential equations become 

nYr> = 0, 

vj’(r> + T yj(r) + bp&(r) - T q+dr) = 0, j = 2, 3,... . (8) 

The first line of Eq. (8) may be integrated at once, giving 

VI(r) = C, = const. (9) 
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Knowing 91 it is easy to calculate q~, , q3, etc., since at any step (j) ‘pj-1 iS icrioW;n 
from the preceding step. The solution of Eq. (8) results 111 the recursion relation 
below 

sjj(r) = Q-‘Q - b. Jvl&) + ~~(1 + bJ r-K; j’ :.K~~lqj-l(~) dr’v. 

(Cj = integration COnstallt.) 

S~bs~itnt~ng yI = Cl (j = 2) in Eq. (IO) one finds for I 

~J~(Y) is obtained by substituting e(r) into Eq. (IO), giving 

-411 3 solutions ~)1(1)-~3(~) are of the form 

It may be shown by a process of complete induction that this form of the solution 
is valid not only for j = i, 2, and 3, but for every j E [I, 2N f 1:. 

Making the replacement 
12; = -Kf 

the solution in vacuum becomes 

Implicit in this solution is the assumption that the denominator of Qj,i dizers 
from zero, i.e., 

fi (Kl - Ki> f 0. (14 I 
I=itl 
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This condition is always fulfilled by a uniform subdivision of the angular interval 
(Apj = pj+l - ruj = const.). 

Eq. (12) represents the general vacuum solution of the S, differential equations, 
Eq. (8). The solution contains 2N + 1 integration constants Ci , N of which are 
eliminated by application of boundary condition (7.1), removing all terms from 
Eq. (12) for which kc < 0. The remaining N + 1 integration constants Ci 
(C,, = 0 for j > 1) allow the N + 1 boundary conditions at r = R, Eq. (7.2), 
to be satisfied. 

4. SOLUTION OF THE S, DIFFERENTIAL EQUATIONS WITH Z#O 

While the special case of vacuum (“Z = 0” stands for &, = Z1 = .Z = 0) 
permits solutions of the S, differential equations to be written down in closed 
form, this is no longer possible when Z # 0 even in the lowest approximation of 
rz = 2. The vacuum solution derived in Section 3 does, however, yield valuable 
information concerning the expected form of the solution when ,Z # 0. 

Putting n = 2N = 2 in Eq. (6) one derives the following set of S, equations: 

[yicr) - ; %@)] + 2 [%?) + + dr)] = k$l A2,kyk(r) 

[cP3'@) + F ?3(r)] + i [cpz’(r) - z q2(r)] = tl A3,,vk(r). 

Equation (15) does not appear to have been treated in the literature, and hence 
nothing is known about the form of its solution. In order to gain some insight into 
what the solution might be like, we shall first solve the equations in vacuum. 
Equation (12) for n = 2, corresponding to Eq. (15) with Aj,lc = 0, gives 

y1= Cl 

q2 = Cl + C2r4 

q33= c,+c,$. 

Boundary condition (7.1) requires that 

or 
91(O) = 93(O) 

c, = 0. 

06) 

(17) 
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The boundary condition is thus equivalent to requiring CJQ(T) to stay 
I = 0‘ 

Knowledge of the solution in vacuum facilitates the finding of the generai 
solution [i.e, the solution of Eqs. (15) and (7)]. In the limit ZO : zI ) z + 15 the 
general solution must go over into the vacuum sohrtion: 

(general solution)ZO,ZI,Z,, -+ vacuum soiution. 

Such a solution must therefore contain 2 integration constants Ci e 
The following ansatz will be made for the general S, solution (cf. [2]): 

Substituting this ansatz into Eq. (6) (with N = 1) leads to the following relation 

The coefficients of y-l, ~“-l (v > I), and rv-l In r must vanish separately, resufting 
in the equations below: 

Since negative indices are not allowed, 

f;:,-1 = hj,-5 = hj>-, = hj,+ = h,,-, = hjs.m, = 0. 

The first line of Eq. (19.2) implies 

where Cl is an arbitrary constant. Putting Y = 4 in the second line of Eq. (19.2) 
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and j = 2 and 3 shows that the coefficient of fZ,? vanishes both times. One is 
therefore justified in putting 

“fi4 = G 3 

with C, another arbitrary constant. 
Since the relations in Eq. (19.2) are linear it follows that allh,, and hj,, may be 

represented by linear combinations of C, and C, . One is therefore led to the 
following ansatz: 

Fromh,, = C, ,JZ,4 = C, , and the fact that coefficients with negative indices are 
zero it follows that 

fi.0 = 1, fj",, = 0, 

fk, = 0, f;,, = 1, (20.1) 

hi,-” = h!j,-, = fi,-” = fi,-y = 0 (v > 0). 

Substitution of Eq. (20) into Eq. (19.2) with the requirement that the resulting 
equations be satisfied for arbitrary values of C, and C, leads to 4 equations for the 
C-independent quantities f :,” , f 5,u , Iz~~, , and I&: 

(v + Kj) h;,,-, + bj(v - Kj*) h;-_,,,-, - i Aj,,h;,,+, = 0. (21.4) 
124 

Equation (21) together with the initial conditions gives 

hf., = 0 for all v, 

f;,, = f:,, = f f,3 = 0 for al1.j. 
(22) 
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Equation (20) now simplifies to 

The functions one is looking for, q&), have the form 

9;j(r) = vi’(Y) Cl + F:(r) Cz * j25) 

In solving for the expansion coefficientsf:,, ifT,j> j and j~:,~ ? one must distingtiish 
the following 3 cases: 

v = 1,2, 3; v = 4; v > 4. 

Final results for the S, case are 

v = 4: f:,, = ; 5 A,,,flt.,, ; 
1=1 

v > 4: 

ff,, = f;., = I$, = I<,, = 0; fist: = 1; 

125,V-4 from Eq. If, 

fiSY from Eq. III, 

fj”,, from Eq. IV. 



(IV) 

+ & k Aucfkv--l 0’ = 1,2, 3). 
3 x=1 

This completes the derivation. All coefficientsfi,y and /z~,~ are seen to be determined 
unambiguously. Moreover, the solution is bounded at the origin, thus satisfying 
boundary condition (7. I), and contains 2 arbitrary constants C, and C, needed for 
satisfying boundary condition (7.2). It is, therefore, the complete solution of 
Eq. (15). 

It may be argued that a more general ansatz of the form 

withp some integer could equally well have been used in place of Eq. (18). However, 
for p i: 1 all hj,” turn out to be zero, so that the resulting vi(r) is not the most 
general solution. The latter requires p to equal 1, corresponding to Eq. (18). 

5. SOLUTION OF THE S, DIFFERENTIAL EQUATIONS FOR Zf 0 

The S4 approximation is obtained by putting n = 2N = 4. According to Eq. (6) 
the S4 differential equations are 

n’(r) = 2 4ka(r) 
h-4 



A solutior~ of these equations is again suggested by the vacuum solution in 
analogy with the approach employed in S, theory. The S, solution in vacuum, 
Eq. (12), for n = 4 becomes 

Boundary conditions (7.1) at r = 0 require that 

Applying this to the vacuum solution of Eq. (27) implies 

c, = c, = 0 

so that the vacuum solution that is bounded at the origin becomes 

One now makes the following ansatz for the solution of Eq. (X), satisfying 
boundary condition (28): 
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The S, differential equations yield relations from which the expansion coefficients 
A” > &.Y > and h,,, may be determined: 

(V + Kj)h,v + bj(v - Kj*>h-1.v f Ilj.v-ti + b&-l,v--22 - & 4,kfi-1 = 0, (30.1) 

(v + Kj + :) gj,, + bj(v - Kj* + %) gj-1,” - i &&,“4 = 0, (30.2) 
k=l 

(j = 172, 3, 4, 5;h,-” = gi,-, = hj,--y = 0). 

Initial valuesJ;:,, , gj,O, and hj,o, needed for solving the recursion relations (30), 
are obtained from Eqs. (30.1) and (30.2) by putting v = 0, and from Eqs. (30.1) 
and (30.3) by putting v = 22. 

v = 0, Eq. (30.1) 

bl=O, j=l-tO.fi,o=O~fi,o=C~, (1st integration constant) 

j = 2, 3, 4, 5 +A0 =A0 =f4,0 =fs,o = G ; (31) 

v = 0, Eq. (30.2) 

j=l - g1,o = 0, 

j=2 - 0 . g,,, = 0 - g,,, = c* , (2nd integration constant) 

j = 3, 4, 5 --j g,,, = s-c, > g,,o = G 3 g5,o = 0. (32) 

On the one hand, initial values of gj,o depend only on C, , on the other, recursion 
relations for gj,, involve neither fj,l, nor hj,, . It is clear, therefore, that gj,y can 
depend only on C, and that one can put 

gj,, = .d,vG . (33) 

Substituting this into Eq. (30.1) and noting that (v + Kj + j) + 0 one finds the 
recursion relation for gT,,y below, valid for v > 0 
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Since, h;,-?. = 0 for 1 < u < 21 Eq. (30.1) simplifies in this range to 

In this interval of v the coefficient h,,, depends only 0x1 fi,n = 
1 <Y < 21 onepilts 

h,” = f3,G I 

Eqs. (35) and (36) together give 

The case of u = 22 must be discussed separately: because 
(V + xi) = 0 forj = 3: 

v = 22; Eq. (30.3) 

j= 1:2-+h -0, 1,o - h,,, = 0; 

j=3 + 0 . h,,, = 0. 

This provides no information about A,,, . Putting 

12 - c3*, 3,o - 

j  = 4, 5 + 11,~~ = if,,, = 0. 

h S,. = C;,* is obtained from Eq. (30.1): 

0 -f,,,, + 66f:,zzG + h,,, - 
t 

c A,,rcf:.a' Cl = 0. 
I;=1 

f 3,22 cannot be determined from this equation because its coefficient is zero. 
One therefore puts 

Am = c3 (3rd integration constant). 
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Furthermore, one has 

All quantitiesJ;,,, are of the form 

f :,,, = & i A,,,f k,,, 2 
x'=l 

f?,,, = 0; 

13 1 5 
f ‘,,,, = - ,f :,a + 24 LFl Auf :,a 3 f;.ee = 0; 

and all Iz~,~ have the form 

with 

0 j# 3; 

12:,. = 
--66f ;.a + i Auf ;.a , j = 3. 

k=l 

(38) 

(39) 
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In this case (u + Kj> # 0 and the previousiy determined values of h;,, now 
permit recursive calculation of all hj,” . hj,, is proportional to C, , according to 
Eq. (39), and itj,y is obtained recursively from hi,3 ~ Hence all hj,” are also propor- 
tional to Cl and one can make the ansatz 

hj,,-pe = h:,y--28c~ . (a$ 

Eqs. (30.3) and (40) then give 

The constantsJ’,, for v > 22 are found in similar manner by an extension of the 
form found for v = 22: 

Substitution off,,, ) Eq. (41), into Eq. (30-l) and solving for-S:,, andjf,, rest&s an 
the relation 

With initial values f,‘,,,, and ff,,, known from previous calculations, and with 
(V + Kij f 0 for all v > 22, all f :,” and f :,V may be determined recursively-from 
Eq. (42). 

The solution qj(r) now presents itself in the following form: 

or 

An interesting feature of this result is the fact that neither yj’(r) nor ~j”(rje are 
expressible in terms of pure power series alone. @+j is nondifferentiabb at I” = 0 
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and +(I’) possesses only derivatives of order I to 21 at this point. However, both 
q+(r) and ~~~(1’) are bounded at Y = 0: 

lj$ %Yr> = J;,,o(O> = 1, 

hi cpjyr) = 0. 

In the special case of & = & = Z = 0 (Aj, = 0), i.e. for vacuum, one finds 

I& = 0, 

fS,” = 0 (u > 01, 

gi,, = 0 (v > 0). 

For z0 = z1 = ,Z’ = 0 the general solution is thus seen to go over into the vacuum 
solution, as it should: 

T%(r) = Cl 9 
q%(r) = Cl + r5’2c2 , 
yp3(r) = C, + j-$r5J2C2 + PCs, 

y4(r) = C, + r5/2C 27 

9)5(r) = Cl - 

6. GENERALIZATION 

Comparison of the vacuum solution (Z = 0) with the general solution (Z # 0) 
in S, and S, approximation suggests a way to proceed in the general case of Z # 0 
and II arbitrary, as indicated in Table I. 

TABLE I 

n B = 0 (vacuum) .Z+0 

2 Pl = % = Cl 

9% = c, + r4C2 9?;(r)  = f j ( r )  + (r’ III 1.) b(F) 



SOLUTION 

The vacuum solution of the 
boundary condition at r = 0 is 

S, differential equations (Eq. 12) satisfying ~KZ 

where oniy kl 3 0 enter into the series and C,,, = 0 for I > 1. Starting from this 
solution, the general solution in S, and S, approximation was obtained in two steps: 

1. i?j,iCI is replaced by a power series F;,(P) in all terms of ~7’ whose k, 
are not integers. 

2. ,.iC, is replaced by a product of a power series and jhr r)lLrr in terms where 
kf is an integer. 

More than a single integer ki can occur in approximations with FZ > 4, as shown 
in Table II below. (ki = 0, the heavy line separates positive vaiues of kr,; from 
negative ones). 

Whenever more than one integer ki occurs a factor (In r)*\!r should be introduced, 
where ~44~ is equal to the order number of ki arranged in a sequence of increasing 
magnitude (index v)~ Apart from this, the two generalizing steps derived on the 
basis of S, and S, solutions are retained. Applying this to the higher order S, 
sohttions and using the table of ki values one finds: 

Fj,@) = f Fj,i,~~L’. 
v=o 

In the general case (12 = arbitrary) the functions Fj,i(P) will contain a tota! of 
N + 1 integration constants Ci so that an alternative way of expressing yj(r) is 
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TABLE II 

n/2=N-+ 1 2 3 4 5 6 I 8 9 10 

j4 kf kj k, ki kj kj ki kj kj kj 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

IS 

19 

20 

21 

4 2; 29 25 2& 2; 2& 2& 2& -. 2i+ 

-2 22 10 s+ 7% vi 7 616 
19 

623 616 
25 

-11 52 20+ 16 14% 13j+ 12% 128 1110 11 

-2 -26 94 34 25s 22 20& 19 18& 

-8 -47 148 504 364 31 28 26; 

-2 -16% -74 214 70 49s 413 3410 13 

-79 -275 -107 292 92; 64 523 

-2 -14 -4OQ -146 382 118 803 

410 11 -22) -56 -191 484 146; 

-2 - 1 p 11 -32 -14 -242 598 

-65 -20 -43% -92% -299 

-2 -129 -28& -56 -117Q 

-6”0 17 -18s -313% -702 

-2 -1115 17 -26 -47& 

-64 -1715 17 -34+ 

-2 -11% -2410 
17 

-@!i 23 -17$j 

-2 -112% 

-e 

-2 
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The discussion in this Section has been coniined to a description of tk genera! 
procedure because an explicit derivation of the general soiurion for arbitrary FT 
would involve a prohibitively complicated mathematica:l formalism, as may be 
judged by the S4 solution. 

CONCLUDING REMARKS 

It has been shown that analytical solutions may be derived for the space depen- 
dence of the angular neutron distribution in S, theory. Since the mathematical 
effort involved increases rapidly with increasing n, practical considerations limit 
the order of S, theory that can reasonably be treated analytically to relativeiy low 
values of H. Practice has shown, however, that a low order theory like S4 sufkes 
for calculating the neutron flux in most nuclear reactors. 

When II is large, one might preferably employ S, theory [lOI [!I], which, in .z 
sense, is complementary to S, theory. While the latter subdivides k~ into discrete 
intervals and leaves Y analytic, the former subdivides the spatial variable into 
discrete intervals and leaves p analytic. S, theory has so far been restricted :ra 
plane geometry. Extending it to spherical geometry should be ef considerable 
interest. 
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